• <track id="6sua3"></track>

  • <menuitem id="6sua3"></menuitem>
  • <menuitem id="6sua3"></menuitem>

    <progress id="6sua3"><bdo id="6sua3"></bdo></progress>
    <samp id="6sua3"></samp>

        1. <samp id="6sua3"></samp>

            兼具高效率和通用性用于邊緣AI的神經形態芯片問世

            2022-08-22 09:28:39     來源:科技日報

               科技日報實習記者?張佳欣

            一個國際研究團隊設計并制造了一種直接在內存中運行計算的芯片,可運行各種人工智能(AI)應用,而且它能在保持高精度的同時,僅消耗通用AI計算平臺所耗能量的一小部分,兼具高效率和通用性。相關研究發表在最近的《自然》雜志上。


            一個國際研究團隊設計、制造和測試了NeuRRAM芯片。

            NeuRRAM芯片特寫
            圖片來源:美國加州大學圣地亞哥分校

            這款名為NeuRRAM的神經形態芯片使AI離在與云斷開的廣泛邊緣設備上運行又近了一步。在云中,AI計算可隨時隨地執行復雜的認知任務,而不需要依賴 與中央服務器的網絡連接。從智能手表到虛擬現實(VR)耳機、智能耳機、工廠中的智能傳感器和用于太空探索的漫游車,其應用比比皆是,遍及世界的每一個角 落和人類生活的方方面面。

            NeuRRAM芯片的能效不僅是目前最先進的“內存計算”芯片(一種在內存中運行計算的創新混合芯片)的兩倍,而且它提供的結果也與傳統數字芯片一樣準確。傳統的AI平臺要龐大得多,通常受限于使用在云中運行的大型數據服務器。

            此外,NeuRRAM芯片具有高度的通用性,支持多種不同的神經網絡模型和架構。因此,該芯片可用于許多不同的應用,包括圖像識別和重建以及語音識別。

            目前,AI計算既耗電又昂貴。邊緣設備上的大多數AI應用程序都涉及將數據從設備移動到云端,AI在云端對其進行處理和分析,然后將結果移回設備。這是因為大多數邊緣設備都是電池供電的,因此用于計算的電量有限。

            通過降低邊緣AI計算所需的功耗,這款NeuRRAM芯片可帶來更強大、更智能、更易于訪問的邊緣設備和更智能的制造。它還可帶來更好的數據隱私,因為將數據從設備傳輸到云會帶來更高的安全風險。


            NeuRRAM芯片采用了一種創新的架構,該架構已在整個堆棧中進行了協同優化。
            圖片來源:美國加州大學圣地亞哥分校

            研究人員通過一種名為能量延遲乘積(EDP)的方法來測量芯片的能效。EDP結合了每次操作所消耗的能量和完成操作所需的時間。通過這一措施,NeuRRAM芯片實現了比目前最先進芯片高7—13倍的計算密度。

            研究人員在芯片上運行各種人工智能任務。它在手寫數字識別任務上準確率達到99%,在圖像分類任務上達到85.7%,在谷歌語音命令識別任務上達到 84.7%。此外,該芯片還在圖像恢復任務中減少了70%的圖像重建誤差。這些結果可以與現有的數字芯片相媲美,后者在相同的位精度下執行計算,但大大節 省了能源。


            科技新聞傳播、科技知識普及 - 中國科技新聞網
            關注微信公眾號(kjxw001)及微博(中國科技新聞網)
            微信公眾號
            微博

            免責聲明

            中國科技新聞網登載此文出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其描述。文章內容僅供參考,不構成投資建議。投資者據此操作,風險自擔。


            推薦閱讀
            已加載全部內容
            點擊加載更多
            www.97sese.com.